DNA recognition by alternate strand triple helix formation: affinities of oligonucleotides for a site in the human p53 gene.

نویسندگان

  • W M Olivas
  • L J Maher
چکیده

Duplex DNA recognition by oligonucleotide-directed triple helix formation is generally limited to homopurine target domains. Various approaches have been suggested for the relief of this constraint. Artificial DNA sequences have previously been used to show that adjacent homopurine domains on opposite DNA strands can be simultaneously recognized by oligonucleotide probes that switch triple helix recognition motifs between domains. Using assays of electrophoretic mobility and chemical protection, we have explored in detail whether such strategies are of benefit in designing high-affinity probes for a natural DNA sequence in the human p53 gene. This target site contains three adjacent, purine-rich domains on opposite DNA strands. Our results show that (i) a modest but statistically significant enhancement in affinity can be achieved for this sequence by designing an oligonucleotide that simultaneously recognizes all three purine domains, (ii) correction of a pyrimidine interruption in one purine domain does not dramatically alter this result, (iii) the relative energetic and structural contributions attributable to recognition of each purine domain can be assessed using probes with combinations of specific and nonspecific nucleotide sequences, and (iv) probe affinity is not correlated with the apparent number of base triplets for certain complexes. These data suggest that unfavorable free energy changes may be associated with alternation between triple helix motifs using existing strategies. In contrast to artificial DNA sequences optimized for this purpose, a substantial affinity enhancement was not observed using alternate strand DNA recognition at this natural target sequence. We therefore conclude that such enhancement is sequence dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binding of DNA oligonucleotides to sequences in the promoter of the human bc1-2 gene.

Duplex DNA recognition by oligonucleotide-directed triple helix formation is being explored as a highly specific approach to artificial gene repression. We have identified two potential triplex target sequences in the promoter of the human bcl-2 gene, whose product inhibits apoptosis. Oligonucleotides designed to bind these target sequences were tested for their binding affinities and specifici...

متن کامل

Triple helix formation by purine-rich oligonucleotides targeted to the human dihydrofolate reductase promoter.

The ability of oligodeoxynucleotides to form specific triple helical structures with critical regulatory sequences in the human dihydrofolate reductase (DHFR) promoter was investigated. A battery of purine-rich oligonucleotides targeted to the two purine.pyrimidine strand biased regions near the DHFR transcription initiation site was developed. The stable triple helical structures formed by bin...

متن کامل

Sequence-specific cleavage of double helical DNA by triple helix formation.

Homopyrimidine oligodeoxyribonucleotides with EDTA-Fe attached at a single position bind the corresponding homopyrimidine-homopurine tracts within large double-stranded DNA by triple helix formation and cleave at that site. Oligonucleotides with EDTA.Fe at the 5' end cause a sequence specific double strand break. The location and asymmetry of the cleavage pattern reveal that the homopyrimidine-...

متن کامل

Sequence-specific recognition of double helical RNA and RNA.DNA by triple helix formation.

The stabilities of eight triple helical pyrimidine.purine.pyrimidine structures comprised of identical sequence but different RNA (R) or DNA (D) strand combinations were measured by quantitative affinity cleavage titration. The differences in equilibrium binding affinities reveal the importance of strand composition. For the sequences studied here, the stabilities of complexes containing a pyri...

متن کامل

Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA.

Reverse transcription of retroviral RNA into double-stranded DNA is catalyzed by reverse transcriptase (RT). A highly conserved polypurine tract (PPT) on the viral RNA serves as primer for plus-strand DNA synthesis and is a possible target for triple-helix formation. Triple-helix formation during reverse transcription involves either single-stranded RNA or an RNA.DNA hybrid. The effect of tripl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 33 4  شماره 

صفحات  -

تاریخ انتشار 1994